
GREEN SINKS DAY Delta 19° March 2015

The Chemistry of New Materials: Biocompatibility & Biodegradability

Dr. Serena Gabrielli

School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino; e-mail: serena.gabrielli@unicam.it

GENERAL COMPOSITES

GENERAL COMPOSI

Polymers:

PE, PP

PVC

POLYSTYRENE

PMMA

PET

AMINO-FORMALDEHYDE

POLYAMIDES

Additives:

Antioxidants

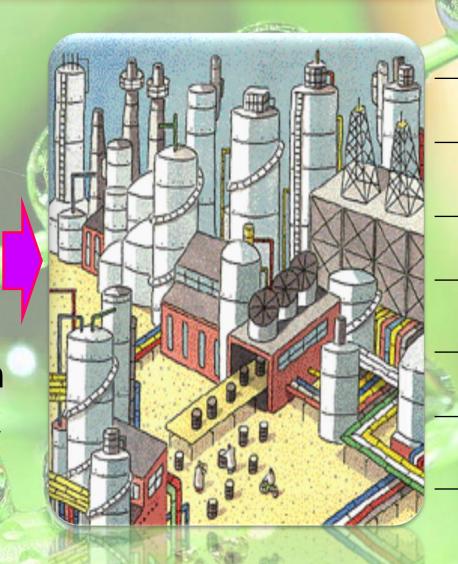
Antistatic

Colors

Impact modifiers

Lubricants

Plasticizers


Stabilizers

Present situation, organic industrial production from:

PETROLEUM REFINERY

Petroleum feedstock

Fuels

→ Solvent

Bulk chemicals

→ Plastics

Fibres

Fine chemicals

→ Oils

organic feedstocks for the organical industry

- Propylene
- Butadiene
- Benzene
- Toluene
- Xilenes

- Syngas
- Methanol
- Hydrogen

Carbon

- Anthracene
- Nafthalene

Oil

Natural gas

Biomass

feedstocks for the chemical industry

Emerging

- Natural polymers (cellulose, rubber)
- Fine chemicals

SUSTAINABILITY

"MEETING THE NEEDS OF THE PRESENT WITHOUT COMPROMISING THE ABILITY OF FUTURE GENERATIONS TO MEET THEIR NEEDS."

IS THE GOAL

CHEMISTRY IS GOING GREEN

GREEN CHEMISTRY

TECHNOLOGIES THAT ARE ENERGY EFFICIENT, MINIMISE OR PREFERABLY ELIMINATE THE FORMATION OF WASTE, AVOID THE USE OF TOXIC AND/OR HAZARDOUS SOLVENTS AND REAGENTS AND, WHERE POSSIBLE, UTILISE RENEWABLE, RAW, MATERIALS.

IS THE MEAN

THE CHALLENGE

Organic industrial production from renewable resources (BIOMASS)

"The term BIOMASS means any organic matter that is available on a renewable basis."

renewable basis."

Energy crops and trees, agricultural food and feed crop residues, aquatic plants, wood and wood residues, animal wastes, and other waste materials."

The Unique Role of Biomass

> 10⁶ years

BIOCOMPATIBILITY



PETROLEUM BASED POLYMERS

COMPOSITE MATERIALS

BIO BASED POLYMERS

BIODEGRADABILITY

... Interconnection...

What Does BIOCOMPATIBLE Mean?

Biomaterial is "A material intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body"

Contact Lens

Image of vascular grafts constructed of expanded Teflon

Composite foam seeded with bone marrrow stromal cells

BIOCOMPATIBILITY – The ability of a material to perform with an appropriate host response in a specific application

HOST RESPONSE – The response of the host organism (local & systemic) to the implanted material devices

...BIO BASED & BIODEGRADABLE ... EMERGING TRENDS

term "bioplastics" refers to a biodegradable plastics and/or plastics derived from renewable resources (the definition from European Bioplastics)

Biodegradable plastics

Bio-based plastics

PES

PLA

PHA

PPHA

PPP

Microbial synthesized

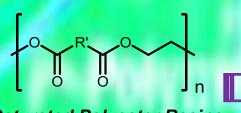
Renewable Resource-based


- PLA Polymer (From Corn)
- Cellulosic plastics
- Soy-based plastics
- Starch plastics

- Polyhydroxy alkanoates (PHAs)
- Polyhydoxybutyrate co-valerate (PHBV)

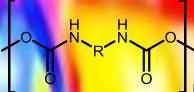
What Does BIODERGRADABLE Mean?

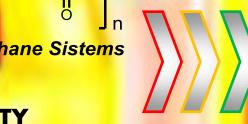
BIODEGRADAB


products as a food so

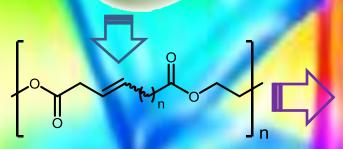
plete assimilation of the degradated the soil microorganisms would ensure returning the carbon into the ecosystem safely and effectively

APPLICABLE TO SINGLE-USE, SHORT LIFE DISPOSABLE PACKAGING & CONSUMER GOODS


Compounds VS Sustainable alternatives



Saturated Polyester Resins


Polyurethane Sistems

HIGH SUSTAINABILITY

TRYGLICERIDES

Determination of BIOGENIC FRACTION (14C)

The method of ¹⁴C (Carbon-14) or radiocarbon, is a radiometric dating method, based on the measurement of the relative abundances of carbon isotopes.

«pMC» (percent modern carbon)

FOSSIL

RESOURCES

 $%^{14}C = 0$

RENEWABLE RESOURCES % ¹⁴C = X

pMC will be due to the organic fraction coming from

RENEWABLE SOURCES

The method of ¹⁴C allows the dating of organic origin materials (bones, wood, textile fibers, seeds, wood charcoal, etc ...

... Why BIO-BASED Plastics?...

Comparing the properties of bio-based polymeric materials with the conventional synthetic petroleum derived polymers shows a major potential of these polymers for the production of well-performing bulk packages.

Petrochemical-based sources are a limited solution.

The increase of oil prices.

Natural resources are inexpensive and readily available.

Reduction in CO₂ emissions.

Renewable biological origin, easier availability

... Acknowledgment

Prof. Enrico Marcantoni

Prof. Roberto Ballini

Prof. Marino Petrini

Prof. Alessandro Palmieri

Dr. Matteo Di Nicola

Dr. Maria Savina Pianesi

